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The synthesis of Strychnos indole alkaloids has become an 
area of renewed interest during the last few years.1 The 
considerable synthetic efforts made in this field2 have culminated 
in five new total syntheses of the heptacyclic alkaloid strychnine 
in only 3 years (Figure I).3 

Several of the most recent approaches to the Strychnos 
alkaloids involve the construction of the pentacyclic ABCDE 
core of these alkaloids by closure of the piperidine ring by 
formation of the crucial C15-C20 bond in the key step,4 either 
by conjugate nucleophilic addition3e or by intramolecular Heck 
reaction2b,3d or radical cyclization.2g In this context, we have 
recently reported23 a synthetic pathway to Strychnos indole 
alkaloids. Its most important features are (i) the closure of the 
piperidine ring (bond formed, Ci5—C20) by an intramolecular 
Michael addition from an appropriately substituted 3a-aryl-
hexahydroindol-4-one and (ii) the formation of the indoline 
nucleus by reductive cyclization in the last step. 

We report here an alternative procedure for formation of the 
C15—C20 bond of Strychnos alkaloids from 3a-arylhexahydroin-
dol-4-ones based on the nickel(0)-promoted cyclization of vinyl 
halides with alkenes. The required TV-substituted 3a-arylhexahy-
droindol-4-one 25 was prepared by alkylation of the known 
intermediate l2a (Scheme 1) with (Z)-l-bromo-2-iodo-2-butene.6 

Initial attempts to induce the closure of the piperidine ring by 
either a radical cyclization or an intramolecular Heck reaction 
failed. Thus, treatment of 2 with Bu3SnH and AIBN led to the 
tricyclic compound 5 (15%; 80% of recovered starting mate­
rial),7 whereas the Heck cyclization under a variety of conditions 
(catalytic or stoichiometric on palladium)8 led only to complex 
unidentifiable mixtures. 

f Dedicated to the memory of the late Professor Felix Serratosa, who 
was a pioneer of organic synthesis in our country. 
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Figure 1. 

Scheme V 

" (i) (Z)-BrCH2CI=CHCH3, anhydrous K2CO3, CH3CN, room tem­
perature, 3 h, 70%. (ii) Ni(COD)2 (6.6 equiv), Et3N, anhydrous CH3CN, 
room temperature, 2.5 h, 40%. (iii) Ni(COD)2 (6.6 equiv), Et3N, LiCN 
(10 equiv), 1:1.5 CH3CN-DMF, room temperature, 2.5 h, 40%. 

Figure 2. 

These discouraging results prompted us to explore nickel-
(O)-promoted cyclizations of vinyl iodide 2. To our surprise, 
treatment of 2 with 6.6 equiv of Ni(COD)29 directly afforded 
the pentacyclic nitrone 3 in 40% yield. This one-pot transfor­
mation involves the Ni(0)-promoted cyclization of the vinyl 
iodide upon the carbon—carbon double bond and the controlled 
reductive cyclization of the a-(o-nitrophenyl) ketone moiety to 
the nitrone functionality.10 When the amount of Ni(COD)2 was 
reduced to 2.5 equiv, the tetracyclic nitrone 6 (Figure 2) was 
obtained as the only isolable product (50%)." This result seems 
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to indicate that reduction of the nitro aromatic group occurs 
prior to the nickel-induced C - C bond formation. The outcome 
of the reductive cyclization was slightly different when the 
process was carried out [6.6 equiv of Ni(COD)2] in the presence 
of LiCN and DMF as the cosolvent: dehydrotubifoline (4),12 

an akummicine degradation product, was obtained in a single 
step in 40% yield.'3 Formation of cyanonickelate(O) species,14 

for instance dicyano(cyclooctadiene) nickelate(O) ([(COD)Ni-
(CN)2]2-) or tricyanonickelate(O) ([Ni(CN)3]3-), when LiCN is 
present in the medium could account for the different course of 
the above reductive cyclizations. 

Although the use of Ni(CO)4 to promote the tandem cycliza­
tion—carbonylation process has recently been described,15 

treatment of vinyl iodide 2 with Ni(CO)4 (Et3N, MeOH, 
anhydrous CH3CN, argon, 37 0C, 18 h) did not afford cyclized 
products bearing the C-16 methoxycarbonyl group; only starting 
material (37%) and the uncyclized carbonylated compound 8 
(27%) could be detected. Unfortunately, under the above 
conditions, cyclization was not fast enough to compete with 
direct carbonylation. 

The controlled reductive cyclization of a-(o-nitrophenyl) 
ketones using Ni(COD)2 is unprecedented and seems to be quite 
general. It can be exploited for assembling the partially reduced 
pyrrolo[2,3-cT]carbazole unit, which is present in several groups 
of indole alkaloids. Thus, treatment of octahydroindol-4-one 
9 with Ni(COD)2 under the above conditions led to either nitrone 
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Scheme 2a 

11 

" (i) Ni(COD)2 (6.6 equiv), Et3N, anhydrous CH3CN, room temper­
ature, 2.5 h, 50%. (ii) Ni(COD)2 (6.6 equiv), Et3N, LiCN (10 equiv), 
1:1.5 CH3CN-DMF, room temperature, 2.5 h, 51%. 

10 (50% yield) or indolenine 11 (51% yield), depending on the 
absence or the presence of LiCN in the reaction mixture 
(Scheme 2). The formation of more reduced products, i.e., 
indolines, was not detected. The above reductive cyclizations, 
associated with the coupling of vinyl halides with alkenes, 
expand the potencial of 3a-arylhexahydroindol-4-ones as build­
ing blocks for indole alkaloid synthesis.2"16 

The procedure reported here provide new solutions for the 
formation of the crucial C15—C2o bond of Strychnos alkaloids 
that can be applied to the synthesis of the most complex 
alkaloids of this group. 
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